Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere.
نویسندگان
چکیده
Understanding the relationship between different scales of convection that drive plate motions and hotspot volcanism still eludes geophysicists. Using full-waveform seismic tomography, we imaged a pattern of horizontally elongated bands of low shear velocity, most prominent between 200 and 350 kilometers depth, which extends below the well-developed low-velocity zone. These quasi-periodic fingerlike structures of wavelength ~2000 kilometers align parallel to the direction of absolute plate motion for thousands of kilometers. Below 400 kilometers depth, velocity structure is organized into fewer, undulating but vertically coherent, low-velocity plumelike features, which appear rooted in the lower mantle. This suggests the presence of a dynamic interplay between plate-driven flow in the low-velocity zone and active influx of low-rigidity material from deep mantle sources deflected horizontally beneath the moving top boundary layer.
منابع مشابه
Variation of Lithosphere-Asthenosphere boundary beneath Iran by using S Receiver function
The current geological and tectonic setting of Iran is due to the ongoing convergence between the Arabian and Eurasian Plates, which resulted in the formation of the Iranian plateau, mountain building, extensive deformation and seismicity. The Iranian plateau is characterized by various domains including the continental collision and the oceanic plate seduction. Based on S receiver functions ar...
متن کاملSatellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary
The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use sat...
متن کاملSeismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates.
The mobility of the lithosphere over a weaker asthenosphere constitutes the essential element of plate tectonics, and thus the understanding of the processes at the lithosphere-asthenosphere boundary (LAB) is fundamental to understand how our planet works. It is especially so for oceanic plates because their relatively simple creation and evolution should enable easy elucidation of the LAB. Dat...
متن کاملStrain quantifications in different tectonic scales using numerical modelling
Fuchs, L. 2016. Strain quantifications in different tectonic scales using numerical modelling. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1354. 58 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9513-8. This thesis focuses on calculation of finite and progressive deformation in different tectonic scales using 2D numerical mod...
متن کاملConstraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy
[1] Although an average westward rotation of the Earth’s lithosphere is indicated by global analyses of surface features tied to the deep mantle (e.g., hot spot tracks), the rate of lithospheric drift is uncertain despite its importance to global geodynamics. We use a global viscous flow model to predict asthenospheric anisotropy computed from linear combinations of mantle flow fields driven by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 342 6155 شماره
صفحات -
تاریخ انتشار 2013